ERROR IN THE NUMERICAL SOLUTION TO THE HEAT
CONDUCTION PROBLEM WITH A NONLINEAR
BOUNDARY CONDITION
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Concerning the heat conduction problem with a nonlinear boundary condition, as in the case
of a boiling process, the effect of the time interval in the numerical solution scheme on the
error of the solution is analyzed here.

The accuracy of the solution to heat conduction problems by the grid method depends on the length of
time intervals (67) and space intervals (h), The error incurred in finite-difference schemes has beenesti-
mated only qualitatively in theoretical analyses of this method of golution: its order of magnitude but not its
actual value has been determined. In the practical sense, the accuracy depends not only on the size of 67
and h but also on the characteristics of the temperature field and on the femperature drops in time as well
as in space. The characteristics of the field depend on the constraints and on how the thermophysical prop-
erties vary as functions of the temperature. It will be shown here that a drastic change in the boundary
conditions, as during boiling, leads to large errors in a numerical golution with improperly selected time
intervals,

The mathematical model of the phenomenon under study is
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0 900 200 590 T material (grade 08 steel) are given in the handbook [1]. We
fg :_: - Z_ fj_' note that, within the test range of temperatures, both A (T) and
' ¢y (T) pass through an extremum, i.e., these temperature char-
Fig,1. Variation of surface tempera- acteristics are by no means linear. The problem of cooling a
ture (T, °C) with time (7, sec), based plate with water was solved for a plate 2R = 0,16 m thick and
on various time intervals 6r: variant at an initial temperature T; = 1400°C, with the water at a con-
1 (1, 3, see Table 1), variant 2 (2, 4). stant temperature T, = 20°C. The heat-transfer coefficient «
T = 0-1400°C and 7 = 0-300 sec (1, 2}, or the thermal flux g at the surface during heat transfer through
T = 203-223°C and 7 = 45-80 sec (3), boiling attain their characteristic maximum during the critical
T = 203-223°C and 7 = 59-94 sec {). boiling mode,
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Fig.2. a) Temperature at the surface x = 0 (1, 2, 3) and at point x = 0,01 m (4) as functions of time, ac-
cording to variant 1 and with the temperature scale T = 0-1400°C for (1, 3, 4) and T = 204-214°C for 2. b)
Heat-transfer coefficient o (kcal/m?.h.deg).1073 ag a function of time, according to variant 1. c) Ther-
mal flux q (kcal/m?.h) 1078 as a function of time, according to variant 2. Times scales: 7 = 0-300 sec (1,
4), 39-63 sec (2), 65-89 sec (3).

TABLE 1. Time Intervals 67 Chosen for Various Periods in the So-
lution Process
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In order to obtain numerical results, we used an electrical model: a resistor grid suitable for a solu-
tion by the implicit finite-difference scheme [2]. The discreteness of the solution with respect to time and
space made it easy to change the model parameters on each step, so as to account for the nonlinearities,
by varying the time interval during the solution process.

In order to take into account the o (T) and the q(T) characteristics when this method is used [2], the
electrical resistances, which either simulate the thermal resistances Ry to heat transfer at the surface or
conduct current Iy simulating the thermal flux at the surface, are changed on each step of the solution in
accordance with the respective surface temperature, When analyzing the effect of the houndary conditions,
therefore, one may succeed equally well in simulating either the o (T) or the g(T) characteristic, it is also
feasible to transfer from one to the other on the same electrical model.

The choice of the method was governed by the aim of the study, namely to establish the effect of dras-
tic changes in & (T) or q(T) on the error in the solution using different time intervals. The space interval h
was held constant and equal to R/8. Such an interval, without making the solution procegs more laborious,
could yield an accuracy within the accuracy limit of the measuring circuit* The time interval for the prob-
lem with such boundary conditions should be adjustable and its proper choice depends on «(T), q(T). The
consequence of an error in determining Tg would be an incorrect value of o given for the respective step.
With an improper (too long) time interval, the «(T) characteristic (its maximum) may have become blurred
or altogether lost.

Variations in the surface temperature of the plate are shown in Fig,1 corresponding to variants of the
solution with improper and fixed time intervals as listed in Table 1.

*With an appropriate choice of 67 intervals, the error did not exceed 0.1%.
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It is evident from the diagram that the consequence of longer time intervals (see variant 1) are ampli-
tudes of temperature fluctuations at the plate surface. In variant 2 (curves 2 and 4) these amplitudes are
5-6 times smaller than in variant 1 (curves 1 and 3). Choosing longer time intervals during rapid changes
in surface temperature (see curves 1 and 2 during the 35-55 sec period) leads to large errors in deter- .
mining the temperatures as well as the instants of time at which those temperature changes occur. Atr
=45 sec (see Fig.l), for example, Ty = 223°C according to variant 1 and Ty = 385°C according to variant 2;
the respective errors are A =-11.5% and 6 = 42%. The time to reach a temperature of, say, 350°C differs
by 17% between the two variants of the solution, This example illustrates the importance of choosing the
proper time interval o in the solution of nonlinear problems with drastic changes in (T, 7) or q(T, 7). All
arbitrary choice of 87 leads to large errors in the determination of absolute temperature, temperature
drops, thermal fluxes, and the run-in time after which a heat apparatus becomes operative,

It is to be noted that, in both variants of the solution, the widest temperature fluctuations appear at the
surface nodes of the simulating grid, while already at the nearest to the surface nodes (x = 0.01 m away)
fluctuations have ceased almost entirely, The curves in Fig,2 represent the time-variation of the surface
temperature, the temperature at point x = 0.01 m, the heat-transfer coefficient o, and the thermal flux q.
The values of & and q have been plotted as functions of time, in order to show how they change in the course
of the solution process.

In order to plot « (r) and q(7), it is necessary to solve a[Tg(r)] and q[Tg(7)]. 1f more accurate dataare
to be obtained when « and q change rapidly, then the time intervals must be reduced. The fluctuations of
and q (see curves 2, 3 in Fig.2b, c) indicate that choosing shorter time intervals 67 in variant 2 has not
eliminated fluctuations of Tg. The fluctuations of Tg in variant 2 are smaller than in variant 1, but some
slight fluctuations of & and q still occur. The evidence must weighed in the solution of reverse problems
(linear problems with variable & (), q(r), or nonlinear problems),

The solution of reverse and inverse problems (the solution to which is, apparently, stable in the small
and unstable in the large) requires a more careful choice of h and « than the solution of forward problems.
In forward problems the choice of h and o determines only the accuracy of the results, the qualitative con-
clusions remain valid anyway (when implicit schemes of solution are used). In reverse and inverse prob-
lems an improper choice of h and §7 may lead not only to large quantitative errors but also to a qualitative
misrepresentation of the sought characteristics.

NOTATION
T is the temperature;
T is the time;
A is the thermal conductivity;
cy is the volumetric specific heat;
@ is the heat-transfer coefficient;
q is the thermal flux density;
h is the space interval,
6T is the time interval;
A= (Tn—Tiz)/(Tmax) 100% is the error with respect to maximum temperature;
6 = (Tiy—Tiy)/(Tiy) 100% is the error with regpect to instantaneous temperature,
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